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Abstract

Empirical Bayes (EB) on hierarchical linear models are frequently

utilized in practice. This paper provides an overview of parametric EB

methods with special emphasis on their application in data-analytic settings.

A variety of models with different levels of complexity are described.

Comparisons of performance with other methods are illustrated using test

data. Applications to validity generalization and survival analysis are also

discussed.



1. Introduction

The models and techniques that fall under the rubric of

empirical Bayes (EB) methods constitute an important resource

for the analysis and understanding of hierarchical data

structures. The goal of this paper is to describe the logic

and implementation of a class of EB methods, called

parametric EB, and show how they can be viewed as a tool for

exploratory data analysis, in a general sense. While most of

the illustrations are drawn from the area of educational

testing, these methods can and have been employed in a wide

variety of settings, some of which are sketched here as well.

Nonetheless, this chapter is no Imnt to be a comprehensive

review of all the different applications of EB ideas in

recent years.

Why study EB methods at all? The work described here

and in the references clearly indicate that EB estimates tend

to be more stable and perform better in cross-validation than

do classical estimates. A striking instance is given in

Braun and Szatrowski (1984) in which it is shown that EB

estimates of a set of regression planes are essentially

unaffected by differential restriction of range. Other

examples are given by Dempster et. al. (1981) and DerSimonian

and Laird (1982).

We begin with examples of EB models and a discussion of

the considerations underlying the modelling process. Section

3 then presents illustrative EB analyses of data on the

prediction of graduate school grades together with typical
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model comparisons. The next section describes a number of

other applications of EB methods to educational measurement,

emphasizing the utility of residual analyses. Section 5

touches on validity generalization while Section 6 focusses

on survival analysis. Section 7 then deals with a number of

miscellaneous issues related to the implementation and

interpretation of EB analyses. The final Section 8 provides

a brief review of the development of EB methods.

2. Preliminaries

2.1 Setting up an Empirical Bayes Model

We will'focus on the simplest two-level structures,

where the first level units are nested within second level

units. Our prototypical example involves students nested

within graduate departments. Suppose then that the data base

includes m departments with ni students in department i.

Associated with each student there are measurements of k

characteristics, one of which we distinguish as the

criterion. In this example, the criterion is first-year

average (FYA) and the other characteristics are pre-graduate

school measures of academic ability or achievement such as

test scores and undergraduate grades. Interest centers on

estimating for each department the regression of FYA on the

other characteristics. The regression model for department i

may be written as

Y = X0i + e i = 1,2,..., m (1)
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where

Y is an nix1 vector of responses,

X is an nixk matrix of characteristics
(including a column of constants)

ai is a kxl vector of regression coefficients,

e is an n xl vector of deviations.

It is usual to assume that

e N(0,E),

where E is a variance-covariance matrix of diagonal form with

a common value along the diagonal, usually denoted 02.

Equation (1) and the associated assumptions are the standard

regression setup for which the least squares (LS) estimate

Oi = (X'X)-1X'Y of "Si has many optimality properties.

The situation in practice, however, is somewhat

different. Even when the assumption of normality seems

appropriate, LS estimates often behave poorly. For example,

if ni is typically small and a longitudinal series of data

are available from department i, the Oi will tend to

fluctuate wildly from year to year. The magnitude of the

fluctuations does not accord with local expert opinion on

changes in the nature of the relation between criterion and

predictors and, in fact, these least squares estimates do not

perform well in cross-validation. In the educational

context, the problem seems to be that various selection

processes combine to yield a configuration of data in the

predictor space that leads to poorly-determined least squares

estimates.
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A natural recourse is (to borrow a term from John Tukey)

to look for ways to "borrow strength." Can the data from the

other departments provide some help in estimating the

regression in a given department? One way of formalizing

this notion is to assume that

Oi N(k,E*) (independently). (2)

The statement (2) implies that the true regression

coefficients behave as if they were independently generated

from some normal distribution with (unknown) parameters 0*

and E*. In Bayesian terminology (2) describes a prior

distribution for the 0i. In this setting, the different

departments constitute multiple realizations from the prior

distribution and, consequently, it is possible to estimate

the parameters of the prior.

The equations (1) and (2) jointly constitute an EB model

for the data. (It is also referred to as a hierarchical or

multilevel linear model.) The standard EB method involves

obtaining maximum likelihood estimates (MLE) of 0* and E*,

and the

posterior distribution of Oi given the data and these MLEs.

The usual EB estimate of 0i, denoted is taken to be the

mean of this posterior distribution.

It should be noted that in this same situation a true

Bvesian would add a third level to the model, namely a

presentation of fully specified priors for the parameters

0* and E*. The EB estimates 13i may be thought of as

approximations to the fully Bayesian estimates. (See Section 7.1).

10
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;men the least squares estimates exist, then the EB

estimates may be expressed as

= vi w air I

vi + vi +

(3)

where vi and w are the precisions (reciprocal variances) of

the LS estimate and the estimate of the prior mean,

respectively. Thus, the EB estimate can be thought of as

resulting from "shrinking" the LS estimate toward the

estimate of the common mean, with the amount of shrinking

depending on the relative precisions of the two estimates.

For example, suppose that the data from the department with

the most extreme LS estimate is such that the estimate is

quite poorly determined. Then the corresponding EB estimate

will be pulled in considerably towards the It centre" of the

scatterplot of the Oi.

It is a useful fact that EB estimates can be obtained

even if the corresponding LS estimate is not uniquely

defined. An expression analagous to (3) may be derived in

that case (Braun, et. al, 1983).

2.2 Exchangeability

The appropriateness of the EB estimation scheme flowing

from (1) and (2) depends critically on the validity of the

assumption of exchangeability among the Oi. Essentially,

this assumption implies that we have no reason, a priori, to

distinguish any one department's vector of regression

coefficients from among the others in terms of the values of
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its components; e.g., that its components should be larger or

smaller than the components of any other school. The

assumption of independence in (2) is a strong way of implying

exchangeability.

In practice, the modelling of exchangeability depends on

the extent of our knowledge about the units of analysis and

the kinds of measurements we hava available to us. For

example, if the sample of schools consists of selective

chemistry departments, we might be quite comfortable with the

assumption of exchangeability among their vectors of

regression coefficients. On the other hand, we might well

feel uncomfortable with this assumption if the sample of

departments were extremely heterogeneous including many

different disciplines and different levels of selectivity.

One alternative would be to cluster the departments into more

homogeneous subgroups and to make the exchangeability

assumption separately for each cluster. How to choose the

clusters constitutes an interesting problem in exploratory

data analysis! Another alternative is to model the departure

from exchangeability. That is, if we have some reason to

suspect that the size of the regression coefficients for the

department depends in some way on measured departmental

characteristics, we can try to incorporate this into our

model.

Let Z be a vector of department-level characteristics

for school i. Components of Zi may include such quantities

as the mean test score for students in the department, the
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size of the class or an indicator for public/private status

of the university. We may then write

Oi Zi'y + 6i (4)

where

6. N(0,E). (5)

The assumptions (1), (4) and (5) constitute a new EB

model. It postulates that the vectors of true regression

coefficients are themselves generated from a regression plane

characterized by the matrix y and independent normal devia-

tions 6 governed by the variance-covariance matrix E. Note

that (5) implies exchangeability among the 60 i.e., that all

the systematic variation between the Oi has been captured by

the regression in (4). Since model (2) is a special case of

(4) and (5), the latter can be used to test the adequacy of

the simpler model either through formal methods such as the

likelihood ratio test for nested hypotheses or through

data-based methods such as cross-validation.

Although this model appears slightly more complex, the

estimation process is nearly unchanged. MLEs for y and E can

be easily obtained and the mean of the posterior distribution

for 00 given the data and these MLEs is taken to be the EB

estimate of Oi. The richness of the EB family should now be

apparent. Different sets of predictors at the different

levels of the model may be tried in various combinations.

All the problems encountered in the familiar step-wise

regression schemes appear here redoubled, overlaid by the

potential for developing clusters of schools for alternative
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analyses. As we shall see later, the clustering can itself

be accommodated in the EB framework.

The task of sorting through all the different models can

be a daunting one. One approach to reducing the number of

models to be considered is to look at the correlation matrix

among potential departmental covariates, discarding those

that are contributing redundant information. Another is to

run step-wise (multivariate) regressions of the set of LS

estimates of 01, on the departmental covariates, eliminating

those covariates that do not appear useful. Actually, these

regressions are a crude version of the estimation process

that a full EB analysis requires. They are faster and should

be quite suitable for screening purposes, although more

refined procedures are certainly needed here. The EB

analysis can then be run on the one or two most promising

combinations of covariates. In general, deciding the

appropriate level of exchangeability depends on a combination

of cross-validatiol, and significance testing.

2.3 Illustrating Empirical Bayes Estimation

Before going on to discuss some analyses of real data,

it should prove instructive to examine a schematic which

illustrates the consequences for estimation of the different

models we have been discussing. Suppose for convenience that

we are considering regression through the origin so that Oi

consists of a single component and that we have available to

us a single school-level covariate that we denote by Z.

Figure 1 (from Braun and Jones, 1985) displays for eleven
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departments three estimates of 00 each plotted against Zi:

the LS estimate and two EB estimates, one derived under the

assumptions (1) and (2), the other derived under the

assumptions (1), (4) and (5).

In the first case, the EB estimates are equivalent to

pulling the LS estimates toward (an estimate of) the point 0*

in (2); in the second case, the EB estimates are equivalent

.
to pulling the LS estimates toward the appropriate point on

(an estimate of) the line denoted by Z'y in (4). In this

illustration there is an apparently strong regression of Oi
A

on Zi, as suggested by the plot of the LS estimates ai

against Z. Accordingly, for departments with extreme values

of Z
t

the two EB estimates result from pulling the LS
i

estimate in different directions. Not surprisingly, then,

the exact structure of the EB model can have a substantial

effect on the final estimates.

3. An Application of Empirical Bayes

3.1 Data and Models

To illustrate the application of EB methods, we will

briefly describe the analysis of some data reported in a

slightly different form in Swinton (1986) and Braun, et. al.

(1986b). These data were collected through the Validity

Study Service (VSS) sponsored by the Graduate Record

Examinations Board during the years 1980 through 1983. They

comprise the records of over 2000 native English-speaking

students at some 99 different departments. Since departments
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self-select for participation in the VSS, the sample at hand

in no way represents a random sample of the universe of

graduate departments. Moreover, only departments with ten or

more students were included in the study.

The model takes the form:

Yii . ki + 131iVii + (32iQii + (33illij + eii (6)

where i indexes graduate departments and j indexes students

within departments. V and 0 represent scores on the verbal

and quantitative sections of the Graduate Record Examination

(GRE), rescaled by dividing by 200. Thus the regression

coefficients for these variables should be of comparable

magnitude to that for undergraduate grade-point average

(UGPA), denoted by U in (6), which is on a 0-4 scale. It is

usually advisable, for reasons of numerical stability, to

rescale the predictors to achieve this comparability.

The criterion, Y, is the first-year average (FYA) in

graduate school. It has also been rescaled to be in the

range 0-4 for all departments. (It appears to be generally

less advantageous to standardize the criterion to have zero

mean and unit variance in each department.) The deviations

are assumed to be normally distributed with mean zero and

variance 1,1,2. Interest centers on the estimation of the

vector of parameters Oi . (0.0 sii, 020 03i)t.

For the second level of the model, we assume that

oi . Zi'y + a , (7)

where Zi is a vector of departmental characteristics;

namely, the constant and the departmental averages of the
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three individual-level predictors V,O and U (denoted

Vi., Oi., Ui.). The vector 6 is assumed to have a

multivariate normal distribution with mean zero and

variance-covariance matrix E.

Together, (6) and (7) comprise an EB model that matches

the hierarchical nature of the data. The conception

underlying this model is that the regression coefficients in

the prediction equation for a department will depend in some

systematic way upon the academic achievements of the

department's students as indicated by the three aggregate

measures Vi., Pi., and U. Of course, in subsequent

explorations various candidate variables may be added to, or

deleted from, either of the equations (6) and (7). It should

be noted that there is nothing in the logic underlying the

model that requires the departmental covariates to match the

individual-level predictors as is the case here. In

particular, one could exclude one or more of these matched

aggregate level covariates and/or include covariates such as

department size that have no counterpart on the individual

level.

Estimates of the parameters of interest are usually

obtained by means of the EM algorithm (Dempster, Laird,

Rubin, 1977). The application of EM to EB models is quite

straightforward and will not be given here as it is described

in a number of sources including the reference above,
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Dempster et.al. (1981), Braun, et.al. (1983) and Braun and

Jones (1985). Some discussion of EM appears in Section 7.2

below.

3.2 Interpreting the Results

Of more immediate concern is how to interpret the

results of the estimation process. Table 1 presents an

estimate of the matrix y, based on (6) and (7). One.

interpretation of y is that a typical department with mean

test scores 17,4, and U among its matriculants should have

regression coefficients for the constant, V, Q and U given,

approximately by:

00* = 1.53 + 1.39V -.504 -.49U

'
.86 + .11-17 -.094

02* = .31 .21V +.04i +.07T:

03* = -.18 .33V +.10i +.31ii

For a department with precisely these mean test scores, 0i,

the LS estimate of 0i, is pulled toward 0* to obtain the

EB estimate, k. For example, one department in

our sample recorded V = 2.49, 4 = 2.49, and U = 3.17.

We find that

.

0* .12 a .
.11

.23

-.10
.46

.44

. .09
.21

.38

Note that each component of -0 lies between the corresponding

components of 0* and 0. This need not always occur, however.

In this case, the negative LS coefficient for verbal is



-13-

slightly positive in the EB estimate. This often happens in

the estimation of prediction equations for graduate

departments as is seen in Figures 2 and 3, where we present

scatterplots for the 99 departments of LS estimates and UGPA,

respectively. In the latter case, while there are many

negative LS estimates, all the EB estimates are positive. In

the former case, some EB estimates are negative, but much

less so than the corresponding LS estimates. These figures

also illustrate rather dramatically the reduced variability

among the EB estimates in comparison to the variability among

the LS estimates. It is interesting to note that the

estimated variance components in E* are rather small: for 01

it is 3.7 x 10-4 and for 03 it is 1.6 x 10-2. The data seem

to suggest then, that there is little variability about the

plane.

It is difficult to gauge from inspection of the y matrix

how strong is the apparent relationship between covariates

and regression coefficients. One approach in, simply to

compute 0* for different combinations of covariates and to

see how much they differ. For example, another department

recorded V . 3.09, 4 . 3.15 and T.: . 3.46. For this

department 0*' . (2.55 .05 .03 .19). Its prediction plane

is more elevated, but shallower, than the one presented just

before. Another approach is to determine whether any

plausible combinations of covariate values lead to a 0* with

negative components.
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3.3 Alternative Models

The fact that we can obtain numerical estimates of the

parameters of the model is no guarantee that we can not do

better. The first step in exploring the space of models is

to experiment both with different sets of predictors and with

different sets of covariates, imposing different structural

assumptions on the data. For example, we might want to add

such covariates as the variances of the test scores among

matriculants in the department since the magnitude of the

regression coefficients in the various departmental

prediction equations may well be affected by differential

restriction of range. Below we will display some comparisons

among competing models of this sort.

We can also adopt another strategy of model criticism.

In the context of our example, we have made a rather extra-

ordinary assumption; namely, that for our purposes the

enormous heterogeneity of graduate disciplines and

departments can adequately captured by a few simple aggregate

measures of student preparation. To put it another way,

under the model an economics department and a physics

department with comparable students, as measured by average

test scores and UGPA, would be expected to have similar

prediction equations. The labels economics and physics are

considered to contain no useful information. Actually, this

runs counter to current practice in which data is pooled over
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all departments in a given discipline, or even over a number

of related disciplines, and a single prediction equation

estimated by least squares.

We can explore some alternatives in this direction by

clustering disciplines according to various subjective

criteria and then fitting an empirical Bayes model of the

form (6) and (7) separately to the departmental data from

each cluster. Thus the assumption here would be that while

departmental labels within clusters are not informative, the

cluster labels are. To illustrate, we may divide the

graduate disciplines into five clusters: Humanities, Social

Sciences, Psychology, Biological Sciences, Physical Sciences

and Engineering (see Braun and Jones, 1985 for more details).

Empirical Bayes models can then be fit to each cluster and

the results compared to models involving no clustering. To

add interest to the competition, we may add another

cluster-based model in which the prediction equations for all

departments in the same cluster are constrained to have the

same slopes, but intercepts are allowed to vary arbitrarily.

The set of equations for each cluster are then fit by least

squares.

3.4 Cross-Validation of Models

How are the comparisons to be carried out? Since the

purpose of the estimation process is to develop an instrument

for prediction, it seems most appropriate to employ cross-

validation (Stone, 1978). Ordinarily, the sample is divided

in half with the model estimated on one-half (the calibration
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sample) and the predictions validated on the other half (the

validation sample). In this case, with many of the

departments so small, it seems more sensible to set aside a

small fraction of the sample for validation leaving most of

the data from each department for model estimation. For this

exercise, three students in each department were set aside

and the model estimated on the basis of the remaining

E(n -3) observations.
i

Results of a cross-validation exercise can be reported

in many ways. In the areas of measurement and testing, the

correlation of observed with predicted is a favorite summary

statistic. Here, however, we prefer to focus on the

residuals themselves; that is, for each department we use the

estimate of its prediction equation to predict the FYAs of

the three students set aside for validation and compare these

predictions to the FYAs actually observed. Following

standard statistical practice, we define the residual to be

observed minus predicted.

For illustrative purposes, we compare the performance of

eight different models. Except for the first, each model

yields an equation of the form (6) for each department.

These models are described below:

OM: The mean FYA in the calibration sample from the

department is used as the predictor.

LSD: Ordinary LS estimate, using data from only that

department.
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LSC: LS estimates generated by discipline cluster; within

a cluster, departments have common slopes but

different intercepts.

LSA: LS estimates treating all 99 departments as a single

cluster; departments have common slopes but different

intercepts.

EB1: EB using departmental predictor means as covariates

in (7); single analysis incorporating all

disciplines.

EB1C: As EB1, but model fit separately to each discipline

cluster.

EB2: As EB1 but including variances of predictors as

additional covariates in (7).

EB2C: As EB1C, but including variances of predictors as

additional covariates in (7).

The LSC method corresponds to carrying out an analysis

of covariance (ANACOVA) separately in each cluster. The EB

methods represent a generalization of the standard ANACOVA

since they allow different slopes as well as different

intercepts. The various EB approaches simply postulate

different models for the variability among departmental

slopes.

Table 2 presents a summary of the performance of these

six models, using the mean squared error of prediction

(average of the squared residuals), denoted MSE, as the

criterion. The first column presents the results aggregated

over all 99 departments, or 3x99 . 297 predictions. Except

23
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for OM and LS, all the methods perform quite similarly, with

EB1 having a slight edge. The remaining columns present the

results separately for each of the five discipline -

clusters.

There are several points worth noting. First, it is

somewhat surprising that using the overall mean is superior

to using LS. This is eloquent testimony to the volatility of

the latter procedure, apparent especially in the results for

the Biology cluster. Second, EB1 and E32, which do not use

cluster information, generally outperform EB1C and EB2C,

which do - even when the results are displayed by cluster.

Thus, this particular choice of clusters does not seem to aid

estimation. On the other hand, LSC does rely on the clusters

and performs quite well. This suggests that the size of the

departments in each cluster needs to be somewhat larger

before we can reliably distinguish differences in slopes.

Finally, we note that EB2 does no better than EB1 even though

it employs additional covariates that might plausibly be

related to the magnitude of the regression coefficients in a

department. Thus the most parsimonious EB model is to be

preferred. In fact, additional evidence suggests that a

single covariate should usually suffice.

A more sobering view of this exercise is to compute the

square root of the typical MSE, the root-mean-square-

deviation, which for EB1 is approximiately 0.35. Thus, the

RMSD is approximately one-fourth to one-fifth the typical

range of FYAs in a department. It is somewhat disheartening
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that all our efforts can not reduce uncertainty in prediction

to a greater extent. Of course, we have not explored other

choices of predictors and covariates that might yield some

improvements.

3.5 More on Clustering

It should be noted that the fitting of EB models

separately to different clusters can be brought fully within

the EB framework by explicitly recognizing this third level

of the hierarchy. Specifically, (3) implies for the ith

department in the kth cluster that

y +
1k ik k ik ik

We then add the assumption that

yk'- N(0, &NT)

where E, and T are matrices and is denotes the Kornecker

product. As far as I know, such a model has not been

implemented in practice, at least not in the EB framework.

Another alternative is to experiment with forming different

sets of clusters of departments and fitting EB models

separately to each of the new clusters. This was carried

out in Braun and Jones (1985), using the distribution of

GRE subject test scores as the basis for clustering

departments. The resulting prediction equations, based on

five empirically determined clusters, did not offer any

improvement either over the global EB model (no clustering).

or the discipline-based clusters already described. In other

settings, however, alternative clusters could lead to

improved estimates.
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4. Other Applications of Empirical Bayes

4.1 Introduction

In the previous sections we have seen how the empirical

Bayes paradigm provides a rich family of models with which to

model hierarchical data. There is, perhaps, an embarrassment

of riches since in many instances it can be extremely

time-consuming to study even a fraction of the plausible

models. Nonetheless, with the aid of cross-validation and

other diagnostics, it is usually possible to select a

serviceable model without an inordinate expenditure of

effort. In this section we illustrate how empirical Bayes

models can be used in a variety of ways to facilitate

exploratory analyses.

4.2 Cross-Stratification of the Population

It often happens that the population under study can be

classified in different ways. For example, in the education

context, students can be classified both by the school they

attend and their ethnicity. We may be interested in how both

these factors affect the relation between the criterion and

the predictors. Such an instance arose in a study of the

predictive validity of the Graduate Management Admissions

Test (GMAT) for White and Black students (Braun, et.al.

1983).

The aim of this investigation was to explore

differential predictive valAity. Unfortunately, Black

students comprised only four percent of the sample of 8500

drawn from 59 schools. The modal number of Black students at
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a school was two and only eight schools had ten or more Black

students enrolled. Using classicAl methods it would be

clearly infeasible to estimate separate prediction equations

for Black and White students at each school. However, the EB

methodology does make such a goal practicable. The model for

school i takes the form:

Y
ij

Z [0 +
1

I. 0 .1 c. , c. N(0,a
2

) independently,
3.3 3 1) lj

where

z
ij

= (1 Vij 0ij Uji)

I
ij

= 1, if the student j is Black
0, if the student j is White.

Here V. and Q.. denote the student's scores on the verbal and
2.3

quantitative sections of the GMAT and U. . denotes the UGPA.
13

This model does provide for separate regression planes for

White and Black students in each school, characterized by the

vectors of coefficients Oli and Oli + 02i, respectively.

We then assume that Oi = (alit3;i)' is governed by the

distribution:

f3i N (t3* )

This setup facilitates the borrowing of information in two

directions: across departments within race and across race

within departments. The fitted models proved quite stable

and informative comparisons among prediction equations were

carried out, even when there was insufficient data in the

department to obtain LS estimates of the prediction

equations. The interested reader is encouraged to read Braun,

et.al. (1983) or Braun and Jones (1981) for further details.
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When one of the classifications yields a dominant group

(in terms of sample size) and several smaller groups,

estimating prediction equations separately for each group may

not be desirable. In such a case, a simple residual analysis

may be sufficient. Braun, et.al. (1986a) studied the

question of whether test scores obtained by disabled students

taking special administrations of the SAT predicted first

year college grades for those students as well as did test

scores obtained by non-disabled students taking regular

administrations of the SAT. Special administrations may

simply involve allowing the student extra time or presenting

the examination in a different format (large type, Braille or

cassette) or both. Students with disabilities are usually

divided into four categories: hearing impaired, visually

impaired, learning disabled and physically handicapped.

Except for the first group, these students tend not to

cluster at specific schools.

For this study, we used EB methods to estimate a set of

college-specific prediction equations based on data from

regular test administrations. These equations were used to

generate residuals both for non-disabled and disabled

students. An example is given in Table 3.

It is evident that while the residuals for the

non-disabled are relatively well-behaved, those for the

disabled students are not, indicating some differential

validity. In particular, note that the trend in mean

residuals with increasing levels of predicted FYA (rows 5, 6,
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7). Subsequent analyses suggested that the anomalous results

for the hearing impaired students were due to grading

practices in the two special schools many attended while for

the learning disabled students they were largely due to

effects of allowing excessive additional time. The simple

residual analysis was sufficient to lead the investigators

into productive lines of inquiry.

4.3 Empirical Bayes Models for Extrapolation

The above analysis, it should be admitted, could

probably have been accomplished using least squares estimates

since for most schools the sample size of the baseline group

was substantial. When the baseline group is not large, the

use of EB estimates should confer substantial advantages in

yielding informative residuals. In the next example,

however, the use of EB methods seems mandatory.

The object of this study (Braun, et.al. 1986b) was to

investigate the predictive validity of GRE test scores

obtained in special administrations. As one might expect,

the test volume is very small and very few students attending

graduate school have taken special administrations of the

GRE. Those that have are sca:tered across a variety of

departments in hundreds of different schools. The principal

obstacle to carrying out a residual analysis similar to the

one described for the SAT was that baseline data was

generally not available. That is, the vast majority of the

departments where the disabled students matriculated had not

participated in the VSS offered by the Graduate Record

BEST COPY AVAILABLE
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Examination Board, so that ETS had no data on other

matriculated students for those departments. Considerations

of time and money precluded embarking on a second massive

data collection project following on one that had been

required in order to obtain criterion data for the disabled

students.

The remedy was to employ a variant of the empirical

Bayes models already mentioned to obtain indirect :stimates

of departmental prediction equations. Briefly, the same set

of departments employed in the analysis in Section 2 was used

to fit an empirical Bayes model of the form (6) and (7). In

this application, however, there were two new covariates,

replacing the ones used previously: the means of the GRE-V

and GRE-0 among students who had their scores sent to the

particular department, rather than among matriculants to the

department (since the latter were unavailable). Through

cross-validation we were able to show that predictions based

on this model behaved as well statistically as those from

more c'onventional models. We could then turn our attention

to those departments where the disabled students had

matriculated. For those departments, as well, we had data

available on score-senders and substituting the score-sender

means into the fitted version of equation (7) yielded an

estimate of the regression coefficients for the department's

prediction equation. In the language of Section 2, our

estimate corresponds to shrinking the least squares estimate

of the prediction equation (which is unavailable here) all

30
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the way to the plane defined by equation (7). The key here

was the recognition that the little auxiliary information

available for departments could be used to calibrate an EB

model that would yield estimates of the desired quantities.

With estimated prediction equations in hand, a residual

analysis for the first-year grades of disabled students who

had taken a special administration of the GRE was carried out

along the lines already described for the SAT. Although the

residuals were somewhat noisier than before (see Table 4),

the same general patterns emerged, lending some credence to

the approach.

5. Validity Generalization

5.1 Introduction

Meta-analysis (Glass, 1976; Light and Pillemer, 1984;

Hedges and Olkin, 1985) is a set of techniques that were

developed to facilitate combining inferences across different

studies of the same, or related, phenomena. A paradigmatic

example is a set of studies undertaken in different classes

to examine the efficacy of a new program relative to the

standard.

In the "fixed effects" apkoach, a generalized linear

model is constructed relating observed treatment effects to

various study characteristics, with the aim of investigating

the nature of the association between true treatment

differences across studies and differences across studies on

the included characteristics. These characteristics might be
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such qualitative factors as the sex of the teacher or the

grade level of the class while quantitative factors might be

the size of the class or the mean class score on a

pre-treatment test. One outcome of such an analysis is

adjusted estimates of the true treatment effects derived from

the fitted version of the model. (See Rosenthal and Rubin,

1982; Hedges and Olkin, 1983.)

In the "random effects" approach, the emphasis lies in

decomposing 'Lhe observed variance among treatment effects

(now treated as realizations from some distribution) into

components that can be attributed to different sources of

variation. (See Rubin, 1981; DerSimonian and Laird, 1983.)

The EB approach corresponds to a "mixed model" setup with

both fixed and random effects. Raudenbush and Bryk (1985)

provide a clear exposition of this sort of analysis.

In this section, we will focus on a special case of

meta-analysis, termed validity generalization (VG). Here

interest centers on investigating the variation in validity

coefficients among different studies with the aim of

ascertaining what proportion of the variation may be

attributed to "artifactual" sources such as differences in

sample sizes, criterion reliability, restriction of range, .

etc. In the employment testing context, see, for example,

Hunter, et.al. (1982) or Schmidt (1987). The latter presents

a summary of the work of one group of investigators who are

convinced that nearly always almost all the observed

variation is artifactual (This view is not shared
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universally.) In the educational contekt, VG is examined by

Linn, et.al. (1981) and by Linn and Hastings (1984).

Interestingly, these authors conclude that there is a

substantial VG in the context of predicting first year law

school grades but that there is strong evidence for at least

some situational specificity.

Traditionally, VG studies have emphasized the random

effects approach. This is due, in part, to the perspective

adopted by Schmidt, Hunter and their collaborators: If

essentially all the variation among validity coefficients is

artifactual, there is no point in building regression models

for them. In fact, the overall mean will serve as the best

estimate of the true validity in each study. This view

represents one end of the continuum spanned by EB models.

5.2 The EB Approach

Hedges (1987) nicely demonstrates how EB methods can be

usefully applied to the VG setting, especially when there are

missing data. Hedges deals specifically with psychometric

aspects of the problem, particularly with the problem of

correcting the Z's for unreliability and restriction of

range. He demonstrates how when missing data precludes the

calculation in all studies of these corrections, the

simplicity and power of the EM algorithm show to good

advantage.

Consider a set of n studies from which correlation

coefficients rl, r2, rn are obtained. Let Ti represent

a version of ri (i = 1, 2, n) corrected for restriction
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of range and reliability. Then define Ti to be the Fisher

Z-transform of Ti:

Ti = 1/2 log [(1 + Ti)/(1 - id] .

We suppose that

Ti N(0 2
i, a )

where Oi is the true transformed validity in study i.

Taking a random effects approach, we may further

suppose that

N(0 , E ) .

(10)

Expressions (10) and (11) are a slightly simplified

version of the model (1) and (2) with which we introduced EB

methods.

The Schmidt-Hunter view corresponds to making the inference

E = 0 and, consequently, employing 0 as an estimate of the

comonvalueofallthe0.However, if the data suggest

that E*;g0, then separate estimates of are called for.

Hedges' focus is on developing improved point estimates

of the underlying correlations through the use of EB methods.

It should be noted, however, that the empirical distribution

function of the EB estimates of validity is not a good estimate

of the distribution of the true validities. The latter

generally shows more dispersion than the former. This was

pointed out by Louis (1984), among others, and he indicates how

different EB estimators are required if the principal purpose

of the exercise is to estimate the distribution of true

validities rather than to develop optimal estimates for the

validity in each department. These insights must be pursued in

3 4



-29-

order to develop a true EB analog to the variance components

analysis that is now standard in VG.

The remainder of this section will deal with two issues

that arise in introducing EB into this area. We will not be

specifically concerned with trying to estimate the degree of VG

that can be inferred for a particular data set, but rather how

different are the statistical estimates arising from different

procedures. The first issue is how much of a difference the

use of EB can make. We will compare two procedures based on

the GRE data already introduced. No corrections for

reliability or restriction of range will be applied here.

The first procedure regresses the departmental validity

coefficients, ri, arising from fitting equation (6), on a

set of six departmental covariates comprising the means

and variances of the predictors among the students in the

department. Let wi denote the fitted value of the validity

coefficient for department i resulting from the fitted plane.

(This is the basis of the procedure adopted by Linn and

Hastings in their approach to VG.)

The second procedure begins by computing

Z = 1/2 log [(1+ri)/(1-ri)]

and carries out an EB analysis based on the model:

-
Z. N(0i,(ni-3)

1
)

X'y + 8 , 8 - N(0,E) ,

where X contains the same departmental covariates included in

the first procedure. Let bi denote the resulting EB

estimates of ei and let
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exp (2k-1)/exp (2-0 +1) .

The quantity is just the inverse Fisher transform of the

EB estimate of ö Figure 4 plots wi against -1.ri and it is

evident that the two estimates are very close for most

departments although as one might expect, the distribution of

the 1.7. is more short-tailed than that of the v In this

case, EB has not made much of a difference. Of course, as

Hedges points out, it can be of crucial importance when data

are missing.

The second issue is the possibly different meanings that

can be placed on the results of carrying out an EB analysis

on different levels. For example, suppose we obtain EB

estimates of the regression coefficients ai in each

department using the model (6) and (7), again employing the

same departmental covariates as in the two procedures above.

Denote these estimates by k as usual. Now compute

= E. )/(-0i E. k -cri 2) (12)

where Ei is the variance-covariance matrix of the predictors

among students in department i and 772i is the EB estimate of

the residual variance about the regression plane. Figure 5

plots r against v and it is evident that r tends to be

substantially smaller than in fact median (ii) . 0.41,

while median (Zi) = 0.58. What accounts for this difference?

My own interpretation is that v represents an

"adjusted" esZimate of concurrent validity while

represents an "adjusted" estimate of predictive validity.

That is, suppose we were able to generate a second set of

3 6
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data for each department, independently of the first, and

having the same Ei as before. Then Z.ri is an estimate of the

concurrent validity we would observe in that second sample.

On the other hand, ii estimates the correlation we would

observe between the criterion data in the second sample and

predictions based on using 13i, derived from the first sample.

Thus the drop from 0.58 to 0.41 represents the typical (for

this data set) attenuation in validity in moving from a

concurrent to a predictive mode. Thus these two quantities

are really answering different questions.

Note that replacing k with the LS estimate of 03. of ai

in (12) yields the ordinary R2-statistic. This would

generally be a poor predictor of how well would predict

the criterion in the second sample. The derived validities

v could themselves be subjected to an EB analysis to

determine the degree of VG for predictive validity. An

interesting question arises if the more complex models

corresponding to (1), (4) and (5) are employed. What

study-level characteristics are suitable candidates for

inclusion as covariates in the higher level of the model?

The answer may not be the same as when we use EB models

simply to obtain improved estimates of validity. I believe

that more attention needs to be paid to the nature of the

process that VG is meant to illuminate and that current

approaches may be inadequate in this regard.
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6. More General Applications of EB

6.1 Miscellaneous Examples

EB ideas have been extended by now to numerous areas of

application and to many classical procedures, as a perusal of

the Current Index to Statistics quickly indicates. Laird

(1978) has shown how to incorporate EB methods in the

estimation of models for two-way contingency tables while

Mislevy (1987) has applied it to the estimation of item

parameters in item response theory models. Mason and Wong

(1985) have shown how the EB paradigm can be applied to the

case of logistic regression; i.e., when the criterion to be

predicted takes the values 0 and 1. They too assume normal

priors of the form (7) for the vectors of coefficients

resulting from the logistic regressions. Unfortunately, the

estimation procedures are somewhat more complicated,

principally because there are no sufficient statistics

available. Consequently, the EM algorithm requires

successive passes through the data, which can become

expensive for large data sets. Wong (1986) has indicated

some simplifications may be possible.

Another approach, similar to that suggested at the end

of Section 2.2, may be useful here. Suppose the model takes

the form:

logit P . X' 13i

Oi . Zi'y + 6i

6i - N(0,E*) independently.

(13)
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In the demographic example described by Wong and Mason,

the event of interest was whether a woman had ever used a

modern contraceptive. Individuals were grouped by country

(here, i indexes country), and predictors included in X were

level of education and type of residence during childhood.

The country level covariates were Gross National Product and

an index of the effectiveness of the national family planning

program.

The suggestion is to obtain first the ordinary logistic

regression estimates Oi of Oi along with the estimated

variances a.2 of these estimates.

Equation (1) can then be replaced by:

N(00 ai2) , independently. (14)

EB estimates of Oi can be derived from (14), (4) and (5)

using the standard EM algorithm. While this procedure cannot

be fully efficient, it should serve as useful screening

device. The more burdensome Wong-Mason method then need only

be applied to a few selected combinations of predictors and

covariates, for which the approximate procedure can provide

useful starting points.

6.2 Classical Survival Analysis

One area in which EB methods should, perhaps, play more

of a role is survival analysis. Especially in medical

research, sample sizes tend to be rather small. Consequently,

survival curves and, especially, hazard functions are rather

poorly estimated. Most of the theoretical Bayesian work,

however, has focussed on the estimation of a single survival
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curve (see Phadia (1980) for an extensive review). Very

little in the Bayesian context has been done on borrowing

information across several samples.

In the frequentist domain, however, considerable

progress has been made through the use of generalized

linear models. Suppose individuals are clustered into I

homogeneous groups which can be characterized by a vector of

covariates, Z. Assume for convenience that the components of

Z are all indicator functions. The first level of the model

postulates that events in group i are governed by a hazard

function Xi(.). The second level postulates that Xi(t) =

X.(t) exp (Z110) where X0(.) represents a baseline hazard

function and 0 is a vector of coefficients to be estimated.

This model was proposed by Cox (1972) in a now-classic paper.

Cox's interest centered on the estimation of 0 and the

comparison of different choices for Z. Somewhat

surprisingly, he showed that 0 could be estimated without

specifying the form of X0(.) using a "partial likelihood"

approach. Although Cox's justification has been criticized,

he has offered an alternative derivation (Cox, 1975).

Estimation can be carried out using GLIM (Whitehead, 1980),

even if certain parametric forms for X0(.) are specified

(Aitken and Clayton, 1980).

Another approach has been suggested by Holford (1980)

and Laird and Olivier (1981). They assume that X0(.) can be

approximated by a piecewise exponential hazard (step-

function) over a suitably chosen set of intervals. They then
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show how the resulting estimation problem is formally similar

to one involving the estimation of log-linear models for

contingency tables incorporating Poisson data, a problem that

can be easily solved using existing software such as LOGLIN

or GLIM.

From our point of view, these methods facilitate the

borrowing of information across groups resulting in more

stable estimates of hazard functions than could be obtained

using the data from a single group alone. (Not surprisingly,

differences in the estimates at the level of the survival

curve are usually not very large - integration is a wonderful

smoother!)

6.3 EB Survival Analysis

The Bayesian perspective could be introduced in a number

of ways. One would be to combine the log-linear model

representation with the work of Laird (1978) already

mentioned. A somewhat simpler tack would be to adapt the

already established normal theory methods to this problem.

This approach has been worked out (Braun 1985) and is

sketched briefly here.

Suppose that there are K groups of individuals and that

data is collected for T-time intervals of equal length. For

each cell in the group x time matrix we require two pieces of

information: the total exposure (measured in person-years or

equivalent units) and the number of events that occurred. Let

eik = amount of exposure for individuals in group k

during time interval i
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d
ik

= number of events occurring for individuals in

group k during time interval i.

We then assume that conditional on eik, the distribution of

d ik is Poisson with parameter a
k

e
1k.

The unknown C.
J.ki

represents the (constant) hazard rate assumed to be operating

during interval i for group k.

The classic estimator of Ail( is dik/eik, the so-called

occurrence-exposure rate. These estimates tend to be quite

unstable. In order to bring the usual EB machinery to bear,

we transform the problem.

Define

Xk = [(dik + .375)/eik
11/2

Conditioning on the matrix of exposures, we assume

Xk N(pk,Sk) (15)

where

X
k

= (X
lk

XTk )'

a 1/2 a 1/2"
Pk (sqk /

and

S
k

is a diagonal matrix with the i
th

diagonal element being

(4e
ik

) . The second level of the model assumes that the Pk

are independently generated from some multivariate normal

distribution; i.e.

pk N(p,E), independently (16)

If the groups conform to a factorial structure or if

they can be characterized by numerical covariates, (16)

could be replaced by a model of the form(4) and (5):
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= Z'y 6

6 - N(0,E), indeicKmdently.

Note that the model does not make strong assumptions

about the shape of the underlying hazard function. The data

are allowed to determine the best approximating step-

function, which can then suggest particular parametric forms

for subsequent analyses. These models include the one

described in Section 6.2 as a special case in which there is

no stochastic component at the second level. As presently

formulated, our models seem to be related to doubly

stochastic Poisson process models (Grandell, 1972).

There are two features of this application, one minor

and one major, that distinguish it from others already

discussed. The minor one is that S , the variance of Xk
is

fixed and need not be reestimated during the course of the

iterations of the EM algorithm. The major feature is that E

generally contains too many parameters, particularly when k

is small and T is relatively large. Our solution has been to

constrain E to take the following form:

E = cr2

2
1

1 P

2
1 . . .

3
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The assumption of geometrically decreasing correlations

seems reasonable for this application. Because formulas for

the MLEs of 02 and p can be expressed in terms of a cubic

equation (Szatrowski, 1976), only a few modifications of the

basic computational algorithm are required.

To illustrate the effect of EB estimation, we present

two figures from Braun (1985) based on a reanalysis of a

retrospective survival study (Cutait, Lesser and Enker, 1983)

of the effectiveness of prophylactic oophorectomy in patients

with cancer of the large bowel. There were 308 patients

distributed among four groups according to whether or not

they had had an oophorectomy and based on the stage of the

disease (Duke staging, levels B or C). The analysis was

restricted to durations up to seventy-two months beyond the

original surgery and this interval was divided into twelve

six-month intervals. There were 110 deaths during the period

of the study.

Figure 6 displays the classical estimates of the true

hazard rates while Figure 7 displays the EB estimates. The

latter are evidently much better behaved although this alone

does not establish their superiority. For this, variations

on the cross-validation methodology are required and these

are described in Braun (1985).

The model proposed here, including the assumption of a

patterned structure for E, should also be suitable for the

analysis of repeated measures designs. In that case Xik

would represent the 1" measurement on the Oh individual.

4 4
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7. Miscellanea

7.1 Empirical Bayes vs. Bayes

It has already been mentioned that the parametric EB

models we have considered'here are closely related, in a

formal sense at least, to fully Bayesian procedures. In the

EB framework, inferences about the parameters of interest are

made conditional on the observed data and the MLEs of the

parameters of the prior. The latter are obtained either

directly through recourse to the marginal distribution of the

observables or recursively through the EM algorithm.

In a proper Bayesian analysis, fully specified

hyperpriors for these parameters would instead be proposed

and a standard Bayesian solution would be developed. It has

been argued (Rubin, 1981) that in normal models the EB

solution ordinarily represents a convenient approximation to

the fully Bayesian approach, provided that the likelihood

function for the prior parameters is nearly symmetric about a

point in the interior of the parameter space and that

non-informative hyperpriors are employed.

In the example Rubin presented, however, the likelihood

function for variance parameter of the prior did achieve its

maximum on the boundary of its range. As a consequence, the

EB inferences substantially underestimated the variability

among the true parameter values. Rubin's solution was to

carry out a summary Bayesian analysis using Monte Carlo

methods.
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A similar problem arose in the ES estimation of survival

curves (Braun, 1985). The MLE of the parameter p (see

Section 6.3) took the value unity - on the boundary of its

range. A fully Bayesian analysis was carried out but the

resulting inferences proved not very different from those

derived from the EB analysis. The lesson, perhaps, is that

the investigator should always be vigilant for anomalies in

the likelihood function that might be indicative of a problem

with the EB approach.

It should be recalled that even under the best of

circumstances, care must be taken to obtain valid estimates

of the uncertainty surrounding EB estimates. This point is

addressed very well by Morris (1983).

The connection between Bayes and ES methods are also

addressed by Deeley and Lindley (1981). However, they are

concerned with the formulation of the EB problem proposed by

Robbins (1955) which differs from that discussed here. (See

Section 8).

7.2 Robustness

One issue that has received comparatively little

attention is that of robustness of EB procedures. In

Robbins' formulation the prior distribution is estimated from

the data, so that the question of the sensitivity of the

inferences to the assumed form of the prior does not arise.

4 6
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In the parametric EB setup we have emphasized here, such

questions do arise. Unfortunately, since it is so convenient

to use the conjugate normal prior, very little investigation

has been carried out.

Some discussion of robustness appears in Morris (1983)

and the accompanying discussion. There is no general

agreement except that when the number of units is small,

nonparametric estimation of the prior is unlikely to be

useful. Leonard (1983) indicates that substantially

different estimates can emerge when nonparametric estimation

techniques are employed. The key issue in practice is what

is lost when the distribution of the unknown parameters is

long-tailed but modelled by a symmetric prior. Berger (1983)

suggests that EB should be quite robust since misspecifica-

tion of the prior would ordinarily lead to minimal shrinkage.

Laird (1982) has carried out some preliminary studies of

the effectiveness of employing a nonparametric maximum

likelihood estimate of the prior, while Laird and Louis

(1982) discuss a related problem in the more general context

of incomplete data problems.

Interestingly, a rather complete analysis in the Poisson

problem has been recently carried out by Gayer and

O'Muircheartaigh (1987). They find that the EB estimates of

event rates are relatively insensitive to the choice of

priors considered. Of course, much more work needs to be

done in this area.
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Returning to the regression problems that we have

presented, EB techniques give evidence of being fairly

resistant to outliers. That is, a few aberrant observations

at the individual level usually do not have a substantial

impact on the EB estimates of the corresponding regression

plants. In that case, the effect of borrowing of information

overwhelms the information provided by those data.

7.3 EM Algorithm

We have not commented much on numerical considerations

in obtaining EB estimates of families of parameters, except

to say that the EM algorithm provides a convenient method.

While it is easy to implement in this setting, convergence of

EM can be slow even in relatively small problems and the

computation of estimated variances is not automatic. (This

is perhaps less serious in the EB context.) In typical

problems at ETS we often run 500 iterations to assure

convergence.

A number of authors have suggested improving the speed

of EM by incorporating some features of a Newton-Raphson

algorithm in the process. Louis (1982) and Meilijson (1986)

have developed such procedures but they have not been applied

to EB problems. See also Laird et. al. (1987).

8. Brief Review of the Development of EB

The name Empirical Bayes has been attached to two

related but differant statistical methods. The term was

coined by Robbins (1955) who introduced it in the context of
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developing optimal sequential decision rules within a

Bayesian framework. Robbins' interest was in procedures

which did not require explicit estimation of the underlying

prior distribution. A excellent review of early work was

given by Maritz (1970) while more recent work by Cressie

(1982) helps to characterize those problems that are amenable

to Robbins' approach. A second school was established by

Efron and Morris (1973, 1975) who developed the insights

gained from Stein-estimators (James and Stein, 1961) into a

set of techniques for the simultaneous estimation of many

parameters. The connection between empirical Bayes (EB) and

Bayesian techniques made more explicit in Deeley & Lindley

(1981) and in Morris (1983). The latter provides a review and

informative discussion. The latter also treats the problem

of interval estimation in the EB context and provides

references to a number of interesting applications of EB

methodology to real-world problems.

Rubin (1980, 1981) has emphasized the notion of EB

solutions as convenient approximations to fully Bayesian

analyses and the importance of checking the reasonableness of

the approximation through examination of the appropriate

likelihood function. The popularity enjoyed by the EM

algorithm in EB calculations is due largely to Rubin's

influence.

Dempster, Rubin and Tsutakawa (1981) discussed the

application of EB to more complicated covariance component

models while Braun et.al. (1983) treated the problem of

49
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estimating regressions when the population of units can be

classified according to a factorial structure in which many

cells are sparsely populated or even empty. Braun and Jones

(1985) explicated EB models for vectors of regression

coefficients that incorporated regression models in the

prior. Similar models for univariate study effects were

presented by Raudenbusch and Bryk (1985).
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1.53 1.39 -.50 -.49

.86 .11 -.09 -.25

.31 -.21 .04 .07

-.18 -.33 .10 .31

Table 1: Estimate of y in (6)

Social Biological Physical

All Humanities Science Psychology Science Science
(99) (12) (43) (10) (16) (18)

OM .15 .18 .14 .14 .15 .16

LSD .19 .18 .19 .14 .30 .16

LSC .13 .16 .13 .11 .14 .14

LSA .13 .16 .13 .11 .13 .14

EB1 .12 .16 .12 .10 .11 .13

EB1C .13 .17 .13 .11 .12 .16

EB2 .12. .16 .12 .10 .10 .14

EB2C .14 .15 .13 .15 .13 .17

Table 2: Cross-validation Estimates of Mean Squared Error of Prediction

for Eight Models. Number of departments in parentheses.
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acced Hearfrg

teaming sta.asical
Visual

Ccntrcas Standard Special StalitrdSpecial Special Stan:Tara Special

1 ni±er 6255 130 84 99 437 198 72 35 171

MaatIS

2 Actual FYA 0.00 -0.06 -0.24 -0.38 -0.49 0.00 -0.19 0.20 -0.11
3 Predicted FA 0.00 -0.31 -0.51 -0.41 -0.42 -0.04 -0.08 0.06 -0.16
4 Pesidual 0.00 0.25 0.27 0.03 -0.07 0.04 -0.11 0.14 0.05

Pesicials

5 Loa Predicted .03 .52 .74 .12 .14 .15 .21 .28 .31
6 Med. Pre1icted-.07 .02 .25 .04 -.03 -.03 -.26 -.20 .02

7 High Predicted .04 .21 -.20 -.07 -.31 .02 -.23 .27 -.18

Stan: lard Ceviaticns

8 Actual FYN 1.00 1.08 0.96 1.12 1.00 0.95 1.07 1.00 1.06
9 Predicted FA 0.50 0.56 0.60 0.50 0.50 0.54 0.52 0.40 0.55
10 Pesidual 0.37 1.00 1.01 1.07 0.96 0.82 1.01 0.93 1.00

Correlaticrs

11 Pctual & Pred. ..49 .39 .23 .33 .34 .50 .35 .37 .37

Ihrae 3: PesidUal Analysis for Disabled C011ege Stud:sits

First year average predictedbi SAls and HSSBN. Standard refers to

dis?bled students taking regular adninistraticns of the T. Special

refers to disabled sbadents taking special adhtini.straticre;cf the SAT.

ROWS 5, 6 and 7 gestalt wan residuals conditicmicnIsinether the

predicted F5Afell in 1st, 2nd or 3rd tercile of distriblticn of RAS.



Nonhandicapped Handicapped
Standard Special

Total Learning Physical Visual

1. Number 2025 184 216 19 48 105

Means

2. Actual FYA 3.48 3.40 3.38 3.49 3.46 3.31

3. Predicted FYA 3.50 3.46 3.47 3.42 3.50 3.47

4. Residual -0.02 -0.06 -0.09 0.07 -0.04 -0.16

Mean Residuals

5. Low Predicted -0.06 0.10 -0.04 0.10 -0.08 0.06

6. Medium Predicted -0.00 -0.10 -0.02 -0.31 0.12 -0.11

7. High Predicted 0.02 -0.15 -0.20 -0.22 -0.16 -0.28

Standard Deviations

8. Actual FYA 0.42 0.50 0.52 0.48 0.55 0.54

9. Predicted FYA 0.23 0.20 0.20 0.20 0.16 0.20

10. Residuals 0.33 0.49 0.51 0.53 0.49 0.53

Correlations

11. Actual & Predicted 0.63 0.24 0.27 0.23 -0.04 0.29

Table 4: Residual Analysis for Graduate School Disabled Students.

First Year Average (FYA) predicted by GREs and UGPA. Standard

refers to disabled students taking regular administrations of the

GRE. Special refers to disabled students taking special adminis-
trations of the GRE. Rows 5, 6 and 7 present mean residuals
conditioned on whether the predicted FYA fell in 1st, 2nd or 3rd

tercile of distribution of FYAS.
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l
Departmental Covariate

Figure 1: Effects of Empiric& Bayes Estimation (Illustrative)

X Least Squares Estimate

ID Empirical Bayes Estimate,
Shrinking to a Point

0 - Empirical Bayes Estimate,
Shrinking to a Line
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Figure 4: Empirical Bayes Concurrent Validity vs.
Least Squares Concurrent Validity
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Figure 6: Occurrence/Exposure Rates. Cancer Data.
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Figure 7: Empiric& Baps Estimates of Hazard Functions. Cancer Data.
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